
DASHBOARD VIDEO SEGMENTATION

Jared Ucherek

The University of Texas at Austin

ABSTRACT

In this paper, we cover the motivation and approach for
accurate image segmentation from dashboard video. We
specifically focus on performance for the Comma10k dataset,
an open source dataset with 10,000 images with five separate
segmentation classes [1]. A variety of semantic segmenta-
tion architectures would perform well on this dataset, and
we discuss their differences. The performance for our model
of choice is compared to other public scores cited on the
Comma10k repo, including Comma10k baseline [2]. We
cover important training and augmentation steps useful for
performance gains and ultimately show great performance
with contemporary transformer model Trans2Seg [3].

Index Terms— Computer Vision, Image Segmentation,
Transformer, Self Driving

1. INTRODUCTION

Self driving has seen an explosion of interest after computer
vision models started to show human level performance in a
variety of tasks. Private companies aim to tackle the challenge
with rich and diverse sensor data constantly surveying the en-
vironment surrounding the car. Commaai controls vehicles
for self driving through a single camera input mounted on the
car dashboard. An accurate machine learning model trained
for object detection would provide crucial information to lat-
ter parts of the self-driving software stack. For this reason,
they curated and released the Comma10k dataset in order to
refine their models for this task.

Many useful datasets in the self driving domain have been
released for similar reasons. Open-sourced datasets offer
great opportunities for collaboration and advancement in the
field. Waymo has released the Waymo Open Dataset, contain-
ing both motion and perception content for 3D environments
[4]. Lyft has a similar public dataset, Level 5 dataset, which
has several thousand human-labeled annotated frames and
semantic maps for 2D and 3D environments [5]. In the aca-
demic setting, UC Berkeley has a popular BDD100k dataset
with a massive amount of annotated data with similar classes
to the Comma10k dataset [6]. Each of these datasets present
unique challenges to the field of perception in the self driving
space, with a variety of complex architectures able to perform
relatively well on the dynamic tasks.

The models used to accurately detect, segment, or predict
actions greatly vary due to the input dimensions of the data
and output dimensions requires for the problem. In this paper,
we focus on the simple combination of single input frames to
single output segmentation. In this domain, inference speeds
can be improved to ensure these models run real-time. We
proceed to describe the dataset, architectures, and our perfor-
mance for this particular image segmentation task.

2. DATASET

The dataset contains 10,000 manually segmented images
taken from a Commaai dashboard camera. The validation
set consists of the 1000 numbered images ending in ’9.png’.
Thus, validation scores for performance comparison can be
easily calculated using Categorical Cross Entropy (CCE).
The dataset contains only a few sequential images, as most
of the images are separate pictures from driving segments
to help protect privacy and diversify the driving environ-
ments present. For semantic segmentation, any unique object
pertaining to a particular class is given the same color. We
display an example with transparent segmentation in figure
1, to give an idea of how the camera is mounted and which
objects are segmented into each class.

Fig. 1. A sample image showing transparent semantic seg-
mentation overlayed on the original image. Each frame is
originally 654 pixels tall by 1164 pixels wide.

There are five individual classes described within the
dataset: movable, my car, lane markings, road, and undriv-



able. Movable objects include other vehicles, people, and
animals. My car includes anything inside the vehicle with
the dashboard camera, including wires, mounts, etc. The lane
markings exclude other commonly painted markings on the
road such as turn arrows and crosswalks. The road is essen-
tially anywhere a car can legally drive. Lastly, undrivable is
the background class, which any pixel is labeled if it belongs
to none of the other classes. As these images are standard
size taken with equivalent cameras, cropping the images to re-
move certain sections should be avoided to robustly compare
performance between models.

Fig. 2. A reshaped 512x512 validation image of the dataset.
The images most readily vary by the time of day, the type of
car being driven, the current weather, and the type of street
being driven on. The ground truth and prediction images are
compared below in figure 8.

While a typical driving segment would be time series, the
images in this dataset are shuffled and contain images from a
wide variety of segments. Therefore, there is minimal leakage
between the training and validation images. A more advanced
segmentation task for a sequence of images would need to
account for this split for proper evaluation. We discuss this
sequential task in the conclusion in addition to more sophisti-
cated tasks, where the time series nature could be used to ex-
ploit faster inference or smooth predictions between frames.

3. TRAINING DETAILS

Before covering the architecture and results, we include
several additional aspects that can influence the final perfor-
mance of our model. These details are important to consider
when comparing the performance with the two other mod-
els below. We trained our model using PyTorch 1.6.0 and
Cuda 10.2 with four GeForce RTX 2090 Ti GPUs, each with
11 GB of VRam. Adam optimizer was used with an initial
learning rate of 5e-5 [7]. With a batch size of 4 images per
GPU and 9000 training images, about 500 iterations were
run per epoch at 1.15 iterations per second. This resulted
in about 10 hours of training overnight from a randomized
initialization of weights. The convolutional backbone used

was EfficientNet-b0, with pretrained weights from ImageNet
[8] [9].

We used the Albumentations library to apply extensive
image augmentations to training images [10]. 16 different
transforms were used from Albumentations, which gener-
ally improve model performance and generalization on these
learning tasks [11]. Specifically, augmentations that affect
noise, blur, brightness, or contrast are important to apply
randomly to the training data. These changes can appear
naturally on the images in the dataset during the variety of
driving conditions that take place. Examples of each of the
transforms are shown in the appendix.

4. SEGMENTATION ARCHITECTURE

Segmentation requires attributing individual pixels from the
input image to target classes. The masks for each class that
represent objects within the image may overlap, but this does
not apply in the Comma10k dataset. As discussed in section
2, the output size from the model should loosely match the
output size for accurate segmentation masking. Thus, most
architectures contain contraction to a latent space then expan-
sion to the relative input size. This paradigm evolved from the
tendency of classification models to contract input features
into low-dimensions before classification. Instead of classifi-
cation, these features are progressively expanded back to the
original input size to predict the final output mask.

Popular models that utilize this general procedure include
FCN, U-Net and Mask R-CNN [12] [13] [14]. For refer-
ence, simplified versions of each of these architectures are
described in figures 3, 4, and 5. U-Net is used as the segmen-
tation model in the Comma10k baseline for excellent perfor-
mance results [2]. These convolutional networks differ from
our architecture of choice, Trans2Seg, that utlizes the atten-
tion mechanism to encode and decode features for segmenta-
tion.

Many architectures within the computer vision domain
have shifted toward the attention mechanism, replacing ei-
ther convolutions or feature extraction operations [16]. For
this reason, we choose to apply Trans2Seg to our segmenta-
tion task [17]. Trans2Seg was originally developed for use
on a novel transparent segmentation dataset, and offers a cou-
pled CNN-Transformer architecture for segmentation. This
architecture utilizes multiple layers of dot product attention
to encode input features, and decode the embedding into an
attention map. As shown in figure 6, each of the M atten-
tion heads from the decoder outputs an attention map that
loosely represents coarse logit predictions of the N classes.
The coarse predictions are combined with an early layer of
the CNN backbone before a fully connected layer outputs the
final logits in the shape of the original image. The details of
these final steps are illustrated in figure 7.

U-Net, Mask R-CNN, and Trans2Seg all utilize a convo-
lutional backbone for feature extraction from the input im-



Fig. 3. FCN, or fully convolutional networks, translated suc-
cessful architectures in the classification space to segmenta-
tion [12]. Just as with other traditional deep learning architec-
tures, FCN extracts features from the input image into a low
dimensionsal embedding using convolutional layers. Instead
of flattening these embeddings into a fully connected layer for
classification, they are upsampled with deconvolution, and a
final layer of 21 1x1 kernels outputs the finalized prediction.

Fig. 4. U-net example architecture [13]. Many variants exist
with changes made to input/ouput dimensions, embedding di-
mensions, and sizes of the intermediate operations. Each blue
box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is pro-
vided at the lower left edge of the box. White boxes represent
copied feature maps.

age before further manipulation into a latent space. Most of
the original architectures favor a classical pretrained ResNet
architecture for this phase [18]. However, the baseline im-
plementation opts to use a contemporary convolutional net-
work shown to outperform most convolutional networks on
image classification datasets, EfficientNet [8]. We opt to uti-
lize this backbone for our architecture as well, as it behaves
similarly to ResNet, downsizing the dimensions by 2 as you
move down each layer.

Most importantly, these transformer models may offer

Fig. 5. Mask R-CNN extends the capabilities of its object de-
tection counterpart, Faster R-CNN [14] [15]. This is done by
adding a small FCN branch to each Region of Interest (RoI).
These RoIs introduce several parameters and subtle design
choices that play a crucial role for overall model performance.
Nonetheless, this architecture intuitively reworks a traditional
bounding box detection model to simultaneously output seg-
mentation masks.

great improvements for time series based vision tasks, as
the transformer models emerged from NLP tasks requir-
ing sequential inputs to the networks [19]. Although some
architectures have emerged for contextual video understand-
ing [20], there will need to be much more development for
datasets and pretrained models before widespread adoption
of transformers are used for most video related tasks.

5. RESULTS

After implementing the architecture with generalizable code
and training with a variety of augmentations overnight, the
performance of the model is comparable to two baseline val-
idation scores shown on the Comma10k repository page [1].
The ground truth and predicted segmentation masks from fig-
ure 2 are shown in figure 8. We believe this shows promise
for future transformer architectures within the space, but more
work will be needed to improve their performance and gener-
alize the architecture across a variety of tasks.

Method Val CCE

Commaai Proprietary Model 0.051
Comma10k Baseline 0.045

Trans2Seg on Comma10k 0.075

Table 1. Comparison of the reported CCE loss on the 1000
validation images of the dataset. Our model, Trans2Seg on
Comma10k, shows promise when compared to the state-of-
the-art baselines. These models all report over 99% accuracy
and segment most images near human-level.

An important qualitative metric involves the real-time
capabilities for each model. Recent work has developed
a framework for comparing semantic segmentation mod-



Fig. 6. The original pipeline of the Trans2Seg hybrid CNN-Transformer architecture. The image is reshaped to 512x512,
and fed into the CNN to extract features. These features pass through a transformer encoder and decoder with learned class
prototypes. The decoder outputs a coarse-grain prediction of the segmentation mask for each class. The predicted segmentation
results from a pixel-wise argmax on the output. More details of transformer decoder and small conv head are shown in figure 7.

Fig. 7. The detailed view of the decoder and small conv head
from figure 6. The query into the decoder are the learnable
category prototypes, and the key/value pairs are the encoded
features. Multi-layered attention within the decoder outputs
the attention map, which is combined with the Res2 layer to
output the predicted mask.

els in relation to their performance on self driving datasets
[21]. Without implementing the specific models used on the
Comma10k dataset into their framework, comparison of the
GFLOPs for each respective model must suffice. Originally,
U-Net with ResNet18 is reported to have 43.9 GFLOPs [21]
on 512x1024 input images. A table in [17] shows Trans2Seg-
medium with ResNet50c to have 49.0 GFLOPs on 512x512
input images, comparable in speed to many other segmenta-
tion models. The operations can be reduced in the transformer

Fig. 8. Ground truth (left) and prediction (right) for image
4861 of the Comma10k dataset. The model accurately seg-
ments the objects into the appropriate classes, but fails to
finely distinguish the edges of objects. The original image
is shown above in figure 2

architecture either by reducing the size of the backbone CNN,
or by employing attention mechanisms with reduced com-
plexity [22] [23]. Ultimately, this suggests that this model
can be readily modified to operate in real-time settings with-
out major trade-offs to its performance.

6. CONCLUSION

Our work details the architecture and performance of two
models for segmenting dashboard images. U-Net and Trans2Seg
both exhibit great performance on the straightforward task,
with promise for potential adoption by Commaai if they
choose to update or change their proprietary model for any
reason. The open-sourced Comma10k dataset will surely
be helpful to use for segmentation benchmarks in both the
academic and private setting. We expect to see the newer
transformer models to be adopted for extensive use in this
space.



As always, important consideration should be given to the
complexity trade-offs with these newer models. When ap-
proaching unsolved problems with deep learning, we should
be aware of what modifications are being made to differen-
tiate between machine learning innovation and standard soft-
ware development. This mindfulness for generalization is im-
portant, as an increasing number of institutions and compa-
nies are relying on engineers and data scientists to automate
challenging tasks with machine learning. Many of these tasks
will require new data pipelines or output targets, but might
be solvable with the models considered outdated by research
standards.

Sequential data from video will continue to gain interest,
and contains important relevance in the self driving domain
that will in turn help machine learning improve across the
field. Many simple tasks involving sequential data or fore-
casting are extremely difficult to approach due to a lack of
datasets or pretrained models to use. An interesting multi-
modal learning project might involve combining our speed
detection work from last semester with this segmentation
task in a single end-to-end model. This includes multi-input-
multi-output for video tasks, a common situation for the
massive amount of aggregated data we have today.

7. REFERENCES

[1] commaai, “comma10k,” GitHub repository, 2020.

[2] Yassine Yousfi, “comma10k-baseline,” GitHub reposi-
tory, 2018.

[3] Enze Xie, “Trans2seg,” GitHub repository, 2018.

[4] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aure-
lien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo,
Yin Zhou, Yuning Chai, Benjamin Caine, et al., “Scal-
ability in perception for autonomous driving: Waymo
open dataset,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
2020, pp. 2446–2454.

[5] John Houston, Guido Zuidhof, Luca Bergamini, Yawei
Ye, Ashesh Jain, Sammy Omari, Vladimir Iglovikov,
and Peter Ondruska, “One thousand and one hours:
Self-driving motion prediction dataset,” 2020.

[6] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian,
Yingying Chen, Fangchen Liu, Vashisht Madhavan, and
Trevor Darrell, “Bdd100k: A diverse driving dataset
for heterogeneous multitask learning,” in IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2020.

[7] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in 3rd International Con-
ference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings, Yoshua Bengio and Yann LeCun, Eds., 2015.

[8] Mingxing Tan and Quoc Le, “Efficientnet: Rethinking
model scaling for convolutional neural networks,” in
International Conference on Machine Learning. PMLR,
2019, pp. 6105–6114.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition, 2009, pp. 248–
255.

[10] Alexander Buslaev, Vladimir I. Iglovikov, Eugene
Khvedchenya, Alex Parinov, Mikhail Druzhinin, and
Alexandr A. Kalinin, “Albumentations: Fast and flex-
ible image augmentations,” Information, vol. 11, no. 2,
2020.

[11] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang,
Junyuan Xie, and Mu Li, “Bag of tricks for image clas-
sification with convolutional neural networks,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2019, pp. 558–567.

[12] Jonathan Long, Evan Shelhamer, and Trevor Darrell,
“Fully convolutional networks for semantic segmenta-
tion,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2015, pp. 3431–
3440.

[13] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” in International Conference on Med-
ical image computing and computer-assisted interven-
tion. Springer, 2015, pp. 234–241.

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross
Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp.
2961–2969.

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: towards real-time object detection
with region proposal networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no.
6, pp. 1137–1149, 2016.

[16] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin
Jaggi, “On the relationship between self-attention and
convolutional layers,” in International Conference on
Learning Representations, 2020.

[17] Enze Xie, Wenjia Wang, Wenhai Wang, Peize Sun,
Hang Xu, Ding Liang, and Ping Luo, “Segmenting
transparent object in the wild with transformer,” arXiv
preprint arXiv:2101.08461, 2021.



[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), Minneapolis, Minnesota, June
2019, pp. 4171–4186, Association for Computational
Linguistics.

[20] Rohit Girdhar, João Carreira, Carl Doersch, and Andrew
Zisserman, “Video Action Transformer Network,” in
CVPR, 2019.

[21] Mennatullah Siam, Mostafa Gamal, Moemen Abdel-
Razek, Senthil Yogamani, Martin Jagersand, and Hong
Zhang, “A comparative study of real-time semantic seg-
mentation for autonomous driving,” in Proceedings of
the IEEE conference on computer vision and pattern
recognition workshops, 2018, pp. 587–597.

[22] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya,
“Reformer: The efficient transformer,” arXiv preprint
arXiv:2001.04451, 2020.

[23] Sinong Wang, Belinda Li, Madian Khabsa, Han Fang,
and Hao Ma, “Linformer: Self-attention with linear
complexity,” arXiv preprint arXiv:2006.04768, 2020.

[24] Pavel Yakubovskiy, “Segmentation models pytorch,”
GitHub repository, 2020.

[25] WA Falcon and et al., “Pytorch lightning,” GitHub
repository, 2019.

8. APPENDIX

The code can be found at this repo: https://github.
com/jareducherek/drive_segmentation. We uti-
lize the training code structure from the comma10k baseline
[2], which required implementing our architecture of choice
in PyTorch Segmentation models [24], enabling us to eas-
ily use the EfficientNet backbone with PyTorch-Lightning [8]
[25]. Our contributions include this architecture implemen-
tation, and updating the original baseline to a new version of
PyTorch Lightning.

Below are the 16 transforms applied to the training data
discussed in section 3. The original image is shown in figure
2.

Fig. 9. Horizontal Flip and Gaussian Noise.

Fig. 10. Grid distortion and elastic transform.

Fig. 11. Shift/scale/rotate and optical distortion.

Fig. 12. Contrast Limited Adaptive Histogram Equalization
(CLAHE) and random brightness.

https://github.com/jareducherek/drive_segmentation
https://github.com/jareducherek/drive_segmentation


Fig. 13. Ground truth and horizontal flip.

Fig. 14. Sharpen and random contrast.

Fig. 15. Blur and motion blur.

Fig. 16. hue saturation and cutout.


	 Introduction
	 DATASET
	 TRAINING DETAILS
	 SEGMENTATION ARCHITECTURE
	 RESULTS
	 CONCLUSION
	 References
	 APPENDIX

