
DASHBOARD VIDEO SPEED PREDICTION

Jared Ucherek

The University of Texas at Austin

ABSTRACT

In this paper, we cover several approaches for accurate speed
prediction from dashboard video. We specifically focus our
attention to providing a sound solution to the Comma AI
speed challenge [1]. We ultimately show great performance
with a simple approach involving sparse optical flow calcula-
tions and keypoint detection derived from classical computer
vision algorithms. This performance is compared to results
obtained by replacin the classical algorithms with a deep
learning model. Additionally, we cover our attempts using
more sophisticated deep learning approaches that span topics
such as interest point detection, visual odometry, and dense
optical flow.

Index Terms— Speed Prediciton, Optical Flow, Keypoint
Detection, Visual Odometry

1. INTRODUCTION

Speed prediction is an important area of research for au-
tonomous robotics, where flying drones and underwater ve-
hicles have no reliable method of tracking odometry. Numer-
ous publications show effective speed prediction for various
forms of data feeds. For vehicle speed estimation, previous
work has shown accurate simultaneous object tracking and
speed estimation [2, 3].

In this paper, we focus on speed prediction from a mov-
ing vehicle, using its dashboard footage as the only available
source of data. The intuitive solution involves finding a key-
point that is a predefined distance from the car, suitably lo-
cated near the center of the image. By determining how far
this point moves between consecutive frames, we may use the
training data to determine how much to scale each of these
distance measurements, which results in predictions for un-
labeled frames. Smoothing these predictions will also help
reduce the variation between consecutive predictions. This
process is described thoroughly in [4], which proposes the
use of classical corner detectors and optical flow algorithms
to determine how far each keypoint moves.

After replicating the effectiveness of this method on our
dataset, we explore alternative approaches that would replace
classical algorithms with more modern techniques in com-
puter vision. This involves an architecture capable of de-
tecting and tracking keypoints between frames. We also sug-

gest the use of a segmentation network to remove extraneous
features from the input images. Lastly, we briefly cover our
expedited attempts at end-to-end approaches, where we feed
in images and receive speed predictions. These methods in-
volve architectures that compute optical flow and depth from
a monocular input feed.

2. DATASET

The dataset is comprised of 20400 labeled training frames,
and 10798 unlabeled testing frames. Test predictions can be
emailed to Commaai for scoring, with MSE less than 5 being
reported as very good performance. The dataset is provided
in video mp4 format at 20 frames per second. We display
some examples frames from both the training and testing set
in figures 1 and 2.

The entire set is cropped uniformly to remove the dash-
baord present throughout the video. We remove the bottom
dashboard, top dashboard, and a small portion on the left and
right sides of the image, as shown in figure 3. Most methods
below operate on the grayscale image while adding Gaussian
blur to ensure there is some robustness for variation between
frames.

Given the time series nature of the dataset, we choose to
reserve the final 30% of the training the training dataset for
validation purposes. When training a neural network on the
dataset, a portion of this is also split between validation and
holdout, where validation MSE is used throughout training
to monitor overfitting, and holdout MSE is checked once we
have fully trained the network.

3. FEATURE POINT REGRESSION

We begin by describing the classical approach to this problem
and best performing method, feature point regression. Given
two consecutive frames, we first detect keypoints on the pre-
vious frame, and remove any that fall outside of a simple
polygon mask. This mask ensures we are utilizing keypoints
on the road, and not other objects or moving vehicles. After
masking, the points and current frame are used to calculate a
sparse Lucas-Kanade optical flow [5]. This calculates where
the previous keypoints have moved in the new frame. We dis-
play the flow vectors in figure 4, with red circles representing



Fig. 1. Frame 1 of the training dataset. Each frame is origi-
nally 480 pixels tall by 640 pixels wide before being cropped
to remove the dashboard.

Fig. 2. Frame 1 and 10797 of the testing dataset, respectively.
This dataset contains a different environment of driving and
will require a robust model for accurate predictions.

their location in the current frame, and green circles repre-
senting their location in the previous frame. Each flow vector
has a position and orientation given by its keypoint pair. By
recentering these flow vectors to the center of the image, and
normalizing their length by this recentered location, we may
calculate a reasonable statistic for predictions.

Due to the variable number of feature points for any given
consecutive pair of frames, we use the median of these val-
ues as our singular feature fed into a regression model. More
importantly, we do not fit any intercept, leaving us with a
single parameter linear regression model that simply scales
our median values to an accurate representation of the true
speed. The predictions of our single-feature regression model
are smoothed using a rolling window mean. These smoothed
predictions are displayed in figure 5 and MSE scores are com-
pared with several variations of the next method in table 1.

4. DEEP FEATURE POINT REGRESSION

Our alternative method to feature point regression simply re-
places the classical algorithms used for feature point detec-

Fig. 3. Frame 1 of the training dataset cropped to remove the
dashbaord. Resulting image is 220 pixels tall and 570 pixels
wide.

Fig. 4. Visualized feature points detected on the masked im-
age using OpenCV.

tion and sparse optical flow with a single deep learning ar-
chitecture. We aim to extract a rich set of feature points
tracked across consecutive pairs of frames using Superpoint,
a self-supervised interest point detection architecture [6]. We
specifically load a Superpoint model pretrained on the Kitti
dataset[7].

For keypoint masking, rather than a handtuned polygon,
we use a popular pretrained segmentation network to separate
the road from other parts of the image [8]. We also experi-
ment with combining the two masks, which ensures that our
keypoints are both on the road and directly in front of the ve-
hicle.

Superpoint can provide either keypoint anchors or a pair
of keypoints tracked across consecutive frames. We test Su-
perpoint’s tracking accuracy by comparing it to optical flow
calculation on its keypoint anchors. Given a set of keypoints
in the previous frame, we apply the same method as before,

Fig. 5. Training and validation ground truth vs prediction
plots for our feature point regression method.



remove points outside of the mask, calculate the flow, cal-
culate the vector norms, calculate the median, and training a
single parameter regression model. The process is simplified
when using the tracked pair of keypoints. We remove points
outside of the mask, calculate the vector norms, calculate the
median, and train the regression model.

The results are shown in table 1. While calculating optical
flow manually outperforms the keypoint tracking with Super-
point, further tuning of the various parameters in Superpoint
could result in better performance. We found that the train
MSE is generally lower for the full tracking method, suggest-
ing that we are using too many inaccurate tracks. Parame-
ters that could be explored for tuning include the confidence
thresholds for keypoint detection, matching pair confidence
threshold, and non-maximal suppression distance.

Method Train MSE Val MSE

Feature Point Regression 5.36 1.32
Superpoint, flow, segmentation 33.76 4.24
Superpoint, flow, original mask 12.11 2.41

Superpoint, flow, combined 12.03 2.70
Superpoint, tracks, segmentation 64.10 3.14
Superpoint, tracks, original mask 9.81 4.62

Superpoint, tracks, combined 9.12 3.80

Table 1. Comparison of the various regression methods
tested. Superpoint tracks keypoints across frames, but the
comparison to applying flow to the previous keypoints it finds
is helpful to determine if its tracking is accurate.

Fig. 6. Road segmentation mask used for filtering keypoints
in our deep feature point regression method. This pretrained
model had great visual results with no preprocessing of the
images in our dataset. Slightly eroding the edges of the mask
would also ensure no points are used too close to vehicle sil-
houettes.

5. IMAGE REGRESSION

While deep learning proves effective at finding features points
to be used for our regression problem, there are numerous al-
ternative deep learning approaches. The most straightforward

Fig. 7. Frame 1 of the validation dataset. Using the polygon
mask results in keypoints placed on a close vehicle. Taking
the pixel-wise or of the segmented road and original polygon
mask results in more suitable keypoints being selected.

approach would be to feed in raw image data into a regres-
sion network. When using a robust architecture that can cap-
ture the time series properties of the data, one may expect this
method to perform exceptionally well.

We explored the feasibility of feeding in a series of low di-
mensional vectors for consecutive image frames using a trans-
former model. This transformer network would operate sim-
ilarly to the groundbreaking language models for natural lan-
guage processing [9]. Furthermore, transformer models have
recently been applied to vision tasks with great results [10].
However, this is an extremely novel research area to explore.
Due to the time constraints and size of the dataset, we ulti-
mately do not pursue this idea in great detail and opt to de-
velop simpler approaches to the problem.

6. OPTICAL FLOW REGRESSION

Several online resources approach this problem by applying
deep learning to dense optical flow fields [11] [12]. Dense
optical flow does not require keypoints for calculation like
sparse optical flow, and offers the potential for a richer fea-
ture set for our deep learning model. These dense flow images
shown in figure 8 can be computed during preprocessing and
saved. During training, we load these flow images in batches
to remove the need for repetitive calculation of the flow im-
age.

We explore tuning the various parameters for dense opti-
cal flow by visually inspecting the resulting images. Several
parameters within the dense optical flow calculation have a
major impact on results. Without properly tuning the param-
eters, the optical flow is too granular, and allows any deep
learning model to quickly overfit to the unique set of several
thousand images. One potential solution is to mask the flow
not contained within the mask we used for our feature point
regression problems.

We trained an EfficientNet model from scratch using Py-
Torch [13] [14]. Without masking the optical flow, this model
quickly overfits to the small amount of training data. We
briefly experimented with randomized masking and cropping
with limited improvement, but were not able to fully test these
methods. Overall, this method helped us understand some of
the limitations of dense optical flow for deep learning on this
dataset, which we consider while exploring the next method.



Fig. 8. Dense optical flow example from frame 1 of train-
ing data. A large window size of 21 is used to blur the flow,
increasing robustness to overfitting.

7. VISUAL ODOMETRY

Visual odometry is a method used in robotics for tracking a
robot’s position with visual sensors. Recent works have ap-
plied deep learning to this problem, with specialized architec-
tures replacing their counterparts found in classical geometric
odometry [15, 16].

Most work within this area focuses on the Kitti dataset, a
large dataset with 11 sequences of synchronized stereo cam-
era images and lidar data for depth information [7]. For our
problem, utilizing these pretrained models for monocular vi-
sual odometry could help track a map position, which infers
speed and orientation. We attempted to apply pretrained mod-
els to our dataset, and found that the depth and flow predic-
tions were too noisy, resulting in poor performance.

Given more time, this tasks would prove more advanta-
geous than vanilla speed prediction. Accurately estimating
odometry using monocular video would prove useful in sev-
eral areas of robotics. More time spent ensuring proper data
preprocessing and model loading would help determine how
accurate the depth and flow predictions are on this unique
dataset.

7.1. CONCLUSION

We detailed two promising approaches for robust speed pre-
diction from dashboard video, showing great performance on
the Comma AI challenge dataset. The intuitive process these
approaches build on involves detecting keypoint movement
through a pair of frames and training regression on this pixel-
wise distance traveled. Both the classical algorithms and deep
learning frameworks to measure this keypoint movement be-
tween frames performed similarly for our dataset, with mini-
mal need for finetuning parameters.

More intensive deep learning approaches proved to be
much more challenging to implement than originally ex-
pected, but show great promise as research advances. Given
the size of the dataset and presence of only a monocular
camera, most approaches are quickly deemed unreliable with
out-of-the-box models. More analysis and work will need
to be done before completely ruling out these methods and

architectures for generalized speed prediction and visual
odometry tasks. With time, computer vision models will be-
gin to be more robust for time-series data and have the ability
to be trained on video with generalized architecture.

Given the current necessity for thorough preprocessing
and architecture selection on these models, they have mini-
mal benefits compared to their simple regression based coun-
terparts. Generalization is difficult, and training specialized
models on datasets does not imply that the model will work
with minimal changes for visually similar data. For speed
prediction, simpler may be better, and we should focus our
attention to developing proper deep learning models for ac-
curate visual odometry instead. This will continue to be an
important topic as deep learning and vision models continue
to find harder tasks to solve.

8. REFERENCES

[1] commaai, “speedchallenge,” GitHub repository, 2018.

[2] Tarun Kumar and Dharmender Singh Kushwaha, “An
efficient approach for detection and speed estimation of
moving vehicles,” Procedia Computer Science, vol. 89,
pp. 726 – 731, 2016.

[3] Wang Jing-zhong and Xu Xiaoqing, “A real-time detec-
tion of vehicle’s speed based on vision principle and dif-
ferential detection,” in 2009 IEEE/INFORMS Interna-
tional Conference on Service Operations, Logistics and
Informatics, 2009, pp. 493–496.

[4] X. Qimin, L. Xu, W. Mingming, L. Bin, and S. Xi-
anghui, “A methodology of vehicle speed estimation
based on optical flow,” in Proceedings of 2014 IEEE In-
ternational Conference on Service Operations and Lo-
gistics, and Informatics, 2014, pp. 33–37.

[5] Bruce D. Lucas and Takeo Kanade, “An iterative image
registration technique with an application to stereo vi-
sion,” in Proceedings of the 7th International Joint Con-
ference on Artificial Intelligence - Volume 2, San Fran-
cisco, CA, USA, 1981, IJCAI’81, p. 674–679, Morgan
Kaufmann Publishers Inc.

[6] Daniel DeTone, Tomasz Malisiewicz, and Andrew Ra-
binovich, “Superpoint: Self-supervised interest point
detection and description,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR) Workshops, June 2018.

[7] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are
we ready for autonomous driving? the kitti vision
benchmark suite,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2012.



[8] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja
Fidler, Adela Barriuso, and Antonio Torralba, “Seman-
tic understanding of scenes through the ade20k dataset,”
International Journal on Computer Vision, 2018.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova, “BERT: Pre-training of deep bidi-
rectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), Minneapolis, Minnesota, June
2019, pp. 4171–4186, Association for Computational
Linguistics.

[10] Nicolas Carion, Francisco Massa, Gabriel Synnaeve,
Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko, “End-to-end object detection with trans-
formers,” in Computer Vision – ECCV 2020, Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, Eds., Cham, 2020, pp. 213–229, Springer Inter-
national Publishing.

[11] RyanChesler, “comma-speed-challenge,” GitHub
repository, 2019.

[12] Gunnar Farnebäck, “Two-frame motion estimation
based on polynomial expansion,” 06 2003, vol. 2749,
pp. 363–370.

[13] lukemelas, “Efficientnet-pytorch,” GitHub repository,
2020.

[14] M. Tan and Quoc V. Le, “Efficientnet: Rethinking
model scaling for convolutional neural networks,” in
ICML, 2019.

[15] Stefan Milz, Georg Arbeiter, Christian Witt, Bassam
Abdallah, and Senthil Yogamani, “Visual slam for auto-
mated driving: Exploring the applications of deep learn-
ing,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Work-
shops, June 2018.

[16] H. Zhan, C. S. Weerasekera, J. W. Bian, and I. Reid,
“Visual odometry revisited: What should be learnt?,” in
2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 4203–4210.


